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Background CrossSection Calculation

•  Hadronic CrossSections
– ~10% of total wall clock time*
– Deep call chain with no hot spots

•  Reduce call chain length
•  Reduce time spent in calculation

*51	
  real	
  events	
  simulated	
  in	
  ~2	
  hours	
  
(provided	
  by	
  Soon)	
  



Cross Section Usage

•  Cross section calculation is used to:
–  Determine (probabilistically) whether an interaction 

occurs in traversing a particular geometric volume.
–  Then determine reaction and outcomes.

•  CrossSectionDataStore instances created for 65 
different processes.
–  Each of these uses different models for different energy 

domains, particles, materials.  
–  Data is (usually) represented in sub-classes of 

G4PhysicsVector.
•  We have been working on increasing the 

performance of the CrossSection calculations.



Two strategies

•  Improved caching of CrossSection results
–  1 cache entry per triple (process/particle/material)
– Completed (In the pipeline toward production code)

•  Surrogate model for CrossSection calculations
– Prototype completed
–  Initial results are promising
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Caching CrossSection Results

•  Currently, there is a 1-entry cache per process for XC calculations.
•  Observation

–  There is an interleaving of recent calls to GetCrossSection with the same 
sets of particle, material, process, and energy.

–  Results in same cross section value
–  True even though energy is a double! (The physics is causing this.)

•  Optimization
–  Expanded cache recent the most recent cross section for particle, material, 

process triple.
•  Measurements

–  17% of calls would benefit from this cache
–  29% of GetCrossSection cycles are from these calls.
–  ~18k triples total
–  ~3k triples would benefit
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Caching CrossSection Results

•  Implementation
–  Hashtable per process (i.e. per CrossSectionDataStore)

•  std::unordered_map
–  One cache entry for each particle/material pair

•  Key
–  material
–  particle definition

•  Value
–  particle energy
–  cross section (including xsecelm)
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G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
  ...

entry = process_cache_map[(part,mat)];
    if(entry->energy == part->GetKineticEnergy()){

   xsecelm = entry->xsecelm;
       crossSection = entry->crossSection; 

} else 
   //Calculate CrossSection the regular way (including xsecelm)
   ...
   entry->xsecelm = xsecelm;
   entry->crossSection = crossSection;  

    } 
return crossSection;

}

Modified CrossSection Calculation



Caching CrossSection Results

•  Performance increase
–  1.8% reduction in wall clock time (51 real events simulated over 2+ hours)

•  Presented at Hadronic working group
–  What is the state of this being put in the production code?
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Surrogate Model: XS Usage

In the Hadronic section of the code:
•  Particle/Material/Process Triples
–  50% of cycles in ~10 triples
–  90% of cycles in ~85 triples
– Total ~18k triples

•  Implementing for tens of triples can utilize fast 
path for nearly all of the calls.



Surrogate Model

•  The cross section of an interaction between a particle 
and a complex material is (re-computed) on each call.
–  Look up each isotope. Use element and isotope abundance 

tables to weight the result.
•  Typical materials

–  Air, Stainless steel, PbZO4 , Cu, Teflon, Circuit boards, …
•  Stainless ={ 12C, 13C, (14C), 54Fe, (55Fe), 57Fe,58Fe, 60Fe, 

(50Cr), 52Cr, 53Cr, 54Cr, 55Mn, 58Ni, 60Ni, 61Ni, 62Ni, 64Ni, 
28Si, 29Si, 30Si}

•  Previous versions of G4 used “pseudoelements” based 
on natural abundances.  This was judged in adequate 
for the “what happened” calculations.



Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in 

initialization). 
–  Identify common  (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E,  ln(E), or log(E) 
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the 
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free 

path (interaction length) calculations.
–  Single query of a G4PhysicsVector 

•  When an interaction occurs (rare) 
–  Perform original physics calculations
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Building the Surrogate Model
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  code.	
  



Douglas-Peucker Approximation.
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G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
  ...
    if(mat == currentMaterial && part->GetDefinition() == matParticle
     && part->GetKineticEnergy() == matKinEnergy) 
    { return matCrossSection; }

   //Calculate CrossSection the regular way (including xsecelm) 
  ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
  ...

G4double cross = GetCrossSection(part, mat);
  ...
}
	
  

Existing CrossSection Calculation



G4double G4CrossSectionDataStore::GetCrossSection(part,mat,requireSlowPath){
  ...
    if(!requireSlowPath){
      fast_entry = (*fastPathMap)[searchkey];
    }
    if (!requireSlowPath && fast_entry != NULL){
      matCrossSection=GetCrossSectonFastPath(fast_entry,part);
    } else {
   //Calculate CrossSection the regular way (including xsecelm)
    } 
  ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
  ...

G4double cross = GetCrossSection(part, mat, true);
  ...
}
	
  

Modified CrossSection Calculation



Fast Path Usage: Runtime
Triples	
   Samples	
   Tolerance	
   	
  Time	
   Percent	
  Diff	
  

90%	
   250K	
   1E-­‐05	
   82:36	
   8.0%	
  
90%	
   10K	
   1E-­‐06	
   85:26	
   6.1%	
  
90%	
   500K	
   1E-­‐05	
   87:07	
   5.1%	
  
90%	
   200K	
   1E-­‐06	
   89:03	
   3.8%	
  
Slow	
  Path	
  Only	
   N/A	
   N/A	
   94:57	
   0.0%	
  
90%	
   2M	
   1E-­‐06	
   99:18	
   -­‐2.8%	
  



Fast Path Usage: Cycles
Samples	
   Tol	
   	
  Cyc/Op	
  

(fast)	
  
Cyc/Op	
  
(slow)	
  

Cyc/Op	
  
(avg)	
  

Init	
  
Cycles	
  

Cyc/Op	
  
(avg)	
  	
  
w/	
  init	
  

Total	
  Calls	
  

2M	
   1E-­‐6	
   274	
   3982	
   839	
   2.77E+12	
   2731	
   1,468,837,903	
  

1M	
   1E-­‐6	
   252	
   3936	
   811	
   1.24E+12	
   1651	
   1,475,681,237	
  

500K	
   1E-­‐5	
   240	
   3873	
   786	
   2.58E+11	
   962	
   1,467,516,422	
  

250K	
   1E-­‐5	
   230	
   3981	
   801	
   1.23E+11	
   884	
   1,486,080,112	
  

10K	
   1E-­‐6	
   242	
   3882	
   820	
   6.17E+9	
   824	
   1,520,218,543	
  



Questions?


